Green tea polyphenols enhance sodium nitroprusside-induced neurotoxicity in human neuroblastoma SH-SY5Y cells.

نویسندگان

  • Yueting Zhang
  • Baolu Zhao
چکیده

Oxidative stress is a main mediator in nitric oxide (NO) -induced neurotoxicity and has been implicated in the pathogenesis of many neurodegenerative disorders. Green tea polyphenols are usually expected as potent chemo-preventive agents due to their ability of scavenging free radicals and chelating metal ions. However, not all the actions of green tea polyphenols are necessarily beneficial. In the present study, we demonstrated that higher-concentration green tea ployphenols significantly enhanced the neurotoxicity by treatment of sodium nitroprusside (SNP), a nitric oxide donor. SNP induced apoptosis in human neuroblastoma SH-SY5Y cells in a concentration and time-dependent manner, as estimated by cell viability assessment, FACScan analysis and DNA fragmentation assay, whereas treatment with green tea polyphenols alone had no effect on cell viability. Pre-treatment with lower-dose green tea polyphenols (50 and 100 microm) had only a slightly deleterious effect in the presence of SNP, while higher-dose green tea polyphenols (200 and 500 microm) synergistically damaged the cells severely. Further research showed that co-incubation of green tea polyphenols and SNP caused loss of mitochondrial membrane potential, depletion of intracellular GSH and accumulation of reactive oxygen species, and exacerbated NO-induced neuronal apoptosis via a Bcl-2 sensitive pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involvement of Mu Opioid Receptor Signaling in The Protective Effect of Opioid against 6-Hydroxydopamine-Induced SH-SY5Y Human Neuroblastoma Cells Apoptosis

Introduction: The neuroprotective role of opioid morphine against 6-hydroxydopamineinduced cell death has been demonstrated. However, the exact mechanism(s) underlying such neuroprotection, especially the role of subtype receptors, has not yet been fully clarified. Methods: Here, we investigated the effects of different opioid agonists on 6-OHDA-induced neurotoxicity in human neuroblastoma...

متن کامل

Additive Protective Effects of Luteolin and Pyruvate against 6-Hydroxydopamine and 3-Hydroxykynurenine Induced Neurotoxicity in SH-SY5Y Cells

Oxidative stress has been implicated as one of the causes in cell death in many neurodegenerative disorders. Due to antioxidative properties in vitro, the use of flavonoids and other polyphenolic compounds synthesised by plants are considered to be a promising strategy to prevent Alzheimer’s disease and Parkinsons’s disease. In the present study, we tested protective effects of some polyphenols...

متن کامل

Involvement of Na+-Ca2+ exchanger in intracellular Ca2+ increase and neuronal injury induced by polychlorinated biphenyls in human neuroblastoma SH-SY5Y cells.

In SH-SY5Y, a human neuroblastoma cell line, Aroclor 1254 (A1254), induced a dose-dependent (10-50 microg/ml) intracellular calcium concentration ([Ca2+]i) increase. Two rather specific sodium-calcium (Na+-Ca2+) exchanger (NCX) inhibitors, bepridil (10 microM) and KB-R7943 [2-[2-[4-(4-nitrobenzyloxy) phenyl]ethyl]isothiourea methanesulfonate] (10 microM), reduced A1254-induced [Ca2+]i increase....

متن کامل

Rheum turkestanicum Janisch Root Extract Mitigates 6-OHDA-Induced Neuronal Toxicity Against Human Neuroblastoma SH-SY5Y Cells

Background and Objective: Rheum turkestanicum (R. turkestanicum) has been known to reduce inflammation and has antioxidant properties such as protective effect in neurons. This study aimed to determine the effects of R. turkestanicum on neuronal toxicity induced by the pro-parkinsonian neurotoxin 6-hydroxydopamine (6-OHDA) in neuroblastoma SH-SY5Y cells. Materials and Methods: MTT and DNA frag...

متن کامل

Glycogen synthase kinase-3β may contribute to neuroprotective effects of Sargassum oligocystum against amyloid-beta in neuronal SH-SY5Y cells

Glycogen synthase kinase (GSK)-3β mediates amyloid-beta (Aβ) and oxidative stress-induced neurotoxicity in neurodegenerative disorders. Natural products with antioxidant activity, such as Sargassum (S.) oligocystum may modulate GSK-3β enzyme and protect against Aβ-induced neurotoxicity. Therefore, we aimed to assess the neuroprotective effects of a methanolic extract of S. oligocystum against A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurochemistry

دوره 86 5  شماره 

صفحات  -

تاریخ انتشار 2003